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Assume constant density and porosity throughout the
sugar cane

Pressure in this glass gap and in the cane is purely
hydrostatic

Flow potential inside the glass gap is pg(hglass - )
Flow potential inside the cane is pgy(hegne — V)

This gives that:
hglass = hcane VY

But this overestimates the value of h_.,., predicting
overflow

This implies that the cause for the gap water is not
dominated by hydrostatic pressure as we expected
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alternative model is to treat the cane as a porous medium in which the (Darcy)
velocity q is governed by Darcy’s law,

V-q=0, q=-xV(pgy+p),
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* Solving for p subject to p = 0 at the top and bottom of the saturated region
yields p = 0, i.e. the pressure in constant (as observed experimentally), and
hence no lateral flow into the air gap.

* We consider lateral flow (“seepage”) driven by diffusion of water.
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* Fick’s Law states that the flux of water is given by
f=-DV§6,

where D is the diffusivity and @ is the volume fraction of water.

* The one dimensional model for the seepage from the sugar cane into the
air gap is
96 926

t d x2’

 This can be solved exactly for 8(x,t) and predicts that the total flux per
unit width into the air gap is

D D
y\/; x Area of Seepage Face = y\/;(hglass — hcane),

where T is the time for the cane to transit the window (around 12 seconds).
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* A thin-layer version of this calculation confirm these estimates.
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14 (hcane — hglass) = Kpg hglass-

\

* For realistic numbers this (very roughly!) gives

hcane o hglass = Ngigss;

which is, rather disappointincﬁl}/, is somewhat worse than the corresponding
prediction of the simple model.
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e Accounting from downflow will presumably reduce L, which makes the situation
somewhat worse.

e However .. the numbers are in the right “ball park” and, since there is
considerable uncertainty about the values of D (which is really a function of 9)
and k, and it is quite possible that more accurate values would give better
agreement.

e Full (probably numerical) solutions of both the diffusion-driven seepage and
pressure-driven outflow problems are necessary to confirm (or disprove) the
order of magnitude estimates.
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We have derived a model for the glass water height when dynamics are
dominated by hydrostatic pressure such as the high porosity limit

This predicted the fast flow rate that is seen in industry but overestimates
the internal water height

We also derived a model for the height when flow into the glass is
dominated by seepage

However, this also predicts a glass water level that is too low

Some combination of these mechanisms or other effects are clearly at
play here and further experiments are required to pin-point the cause



