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• Assume constant density and porosity throughout the 
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• Pressure in this glass gap and in the cane is purely 
hydrostatic
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• Assume constant density and porosity throughout the 
sugar cane

• Pressure in this glass gap and in the cane is purely 
hydrostatic

• Flow potential inside the glass gap is 𝜌𝑔(ℎ𝑔𝑙𝑎𝑠𝑠 − 𝑦)

• Flow potential inside the cane is 𝜌𝑔𝛾 ℎ𝑐𝑎𝑛𝑒 − 𝑦

• This gives that:
ℎ𝑔𝑙𝑎𝑠𝑠 = ℎ𝑐𝑎𝑛𝑒 𝛾

• But this overestimates the value of ℎ𝑐𝑎𝑛𝑒, predicting 
overflow

• This implies that the cause for the gap water is not 
dominated by hydrostatic pressure as we expected



A Porous Medium Model

• If the sugar cane is more compact and/or the fluid is more viscous then an
alternative model is to treat the cane as a porous medium in which the (Darcy)
velocity q is governed by Darcy’s law,

𝛻 ⋅ 𝒒 = 0, 𝒒 = −𝜅 𝛻 (𝜌 𝑔 𝑦 + 𝑝),

where 𝜅 is the permeability and 𝑝 is the pore pressure.
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• We consider lateral flow (“seepage”) driven by diffusion of water.



Diffusion of Water into the Air Gap

• Fick’s Law states that the flux of water is given by
𝑓 = −𝐷 𝛻 θ,

where 𝐷 is the diffusivity and 𝜃 is the volume fraction of water.

• The one dimensional model for the seepage from the sugar cane into the
air gap is

𝜕 𝜃

𝜕 𝑡
= 𝐷

𝜕2𝜃

𝜕 𝑥2
,

• This can be solved exactly for 𝜃 𝑥, 𝑡 and predicts that the total flux per
unit width into the air gap is

𝛾
𝐷

𝑇
× Area of Seepage Face = 𝛾

𝐷

𝑇
ℎglass − ℎcane ,

where T is the time for the cane to transit the window (around 12 seconds).
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• The hydrostatic pressure of the water in the window forces some of the
water back out of the flooded window and into the sugar cane.

• A possible model for this flow is that the flux per unit width into the
sugar cane is

𝐾 𝜌 𝑔 ℎglass

𝐿
× Submerged Area =

𝐾 𝜌 𝑔 ℎglass
2

𝐿
,

where L is the penetration depth into the sugar cane.

• In the absence of downflow presumably 𝐿 = ℎglass, and hence the flux
simplifies to 𝐾 𝜌 𝑔 ℎglass.

• A thin-layer version of this calculation confirm these estimates.
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• Sanity Check: The diffusion-driven seepage will refill an empty window is of the
order of a minute or so, which is rather longer than seen in practice, but doesn’t
account for water spilling in from the top of the sugar cane.

• Equating diffusion-driven seepage in and pressure-driven flow out of the window
yields

𝛾
𝐷

𝑇
ℎglass − ℎcane = 𝐾 𝜌 𝑔 ℎglass.

• For realistic numbers this (very roughly!) gives 
ℎglass − ℎcane ≃ ℎglass,

which is, rather disappointingly, is somewhat worse than the corresponding 
prediction of the simple model.

Order of Magnitude Estimates
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• Accounting from downflow will presumably reduce 𝐿, which makes the situation
somewhat worse.

• However … the numbers are in the right “ball park” and, since there is
considerable uncertainty about the values of D (which is really a function of θ)
and K, and it is quite possible that more accurate values would give better
agreement.

• Full (probably numerical) solutions of both the diffusion-driven seepage and
pressure-driven outflow problems are necessary to confirm (or disprove) the
order of magnitude estimates.
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• We have derived a model for the glass water height when dynamics are 
dominated by hydrostatic pressure such as the high porosity limit

• This predicted the fast flow rate that is seen in industry but overestimates 
the internal water height

• We also derived a model for the height when flow into the glass is 
dominated by seepage

• However, this also predicts a glass water level that is too low

• Some combination of these mechanisms or other effects are clearly at 
play here and further experiments are required to pin-point the cause
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